Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.

نویسندگان

  • Xu Zhang
  • Po-Jung Jimmy Huang
  • Mark R Servos
  • Juewen Liu
چکیده

Understanding the interface between DNA and nanomaterials is crucial for rational design and optimization of biosensors and drug delivery systems. For detection and delivery into cells, where high concentrations of cellular proteins are present, another layer of complexity is added. In this context, we employ polyethylene glycol (PEG) as a model polymer to mimic the excluded volume effect of cellular proteins and to test its effects on DNA adsorption and hybridization on gold nanoparticles (AuNPs) and graphene oxide (GO), both of which show great promise for designing intracellular biosensors and drug delivery systems. We show that PEG 20000 (e.g., 4%) accelerates DNA hybridization to DNA-functionalized AuNPs by 50-100%, but this enhanced hybridization kinetics has not been observed with free DNA. Therefore, this rate enhancement is attributed to the surface blocking effect by PEG instead of the macromolecular crowding effect. On the other hand, DNA adsorption on citrate-capped AuNP surfaces is impeded even in the presence of a trace level (i.e., parts per billion) of PEG, confirming PEG competes with DNA for surface binding sites. Additional insights have been obtained by studying the adsorption of a thiolated DNA and a peptide nucleic acid. In these cases, the steric effects of PEG to impede adsorption are observed. Similar observations have also been made with GO. Therefore, PEG may be used as an effective blocking agent for both hydrophilic AuNP and for GO that also contains hydrophobic domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defluoridation of Aqueous Solution by Graphene and Graphene Oxide Nanoparticles: Thermodynamic and Isotherm Studies

Fluoride, a non-essential element, can enter water resources through several natural processes and human activities. The benefits and risks of fluoride depend on the concentration of this anion on drinking waters. In the present study, the performances of graphene and graphene oxide nanoparticles were investigated for the removal of fluoride from aqueous solution. In the present resea...

متن کامل

Kinetics adsorption of Amoxicillin from aqueous solution by Graphen Oxide- Gold nanoparticles (GO-AuNPs) nanocomposite as novel adsorbent

In this research, Graphene Oxide- Gold nanoparticles (AuNP/GO) were easily fabricated by a redox reaction between GO and chloroauric acid without using any additional reductant and then used to stabilize Pickering emulsions. (AuNP/GO) was investigated by FT-IR spectroscopy. The changes of parameters such as contact time, pH, Amoxicillin initial concentration and temperature were tested and inve...

متن کامل

Kinetics adsorption of Amoxicillin from aqueous solution by Graphen Oxide- Gold nanoparticles (GO-AuNPs) nanocomposite as novel adsorbent

In this research, Graphene Oxide- Gold nanoparticles (AuNP/GO) were easily fabricated by a redox reaction between GO and chloroauric acid without using any additional reductant and then used to stabilize Pickering emulsions. (AuNP/GO) was investigated by FT-IR spectroscopy. The changes of parameters such as contact time, pH, Amoxicillin initial concentration and temperature were tested and inve...

متن کامل

Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: segment effect on gold ion reduction, stabilization, and particle morphology.

We report here on the segment effects of poly(ethylene oxide)-containing block copolymers (PEO-BCP) on the reduction activity for tetrachloride gold(III) ([AuCl(4)](-)), interfacial activity for gold surface, colloidal stability, and morphology of gold nanoparticles formed in aqueous solutions. In particular, the effects of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), polyethylene (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 28 40  شماره 

صفحات  -

تاریخ انتشار 2012